University Hamburg
Department of Informatics
Scientific Computing Research Group

Working with Buffers

Seminar Paper

Seminar Efficient Programming in C

Christoph Brauer

Obrauer@informatik.uni-hamburg.de

Supervisor : Michael Kuhn

April 15, 2013

Working with Buffers

Abstract

This paper gives an introduction to C buffers including common allocation variants
and storage locations. Runtime allocation efficiency is discussed by comparison of
different dynamic allocation mechanisms, and common security issues as well as
according countermeasures are pointed out.

Working with Buffers

Contents
1 Introduction

2 Introduction to C Buffers and Storage Variants

2.1 Terminology
2.2 Buffer Variants
2.2.1 StaticBuffers oL
2.2.2 Dynamic Buffers 000
223 TheStack
224 TheHeap
3 Runtime Allocation Efficiency
3.1 Malloc Allocation
3.2 Slice Allocation
3.3 Summary

4 Security Concerns
4.1 Countermeasures e

5 Bibliography

Christoph Brauer

1 Introduction

The C programming language offers various buffer allocation strategies. This paper
aims to impart knowledge about different allocation mechanisms in order to provide
a programmer with the ability to choose the most efficient mechanism given a
specific task. Additionally, common pitfalls and security weaknesses are pointed
out to maximize efficiency not only in terms of ressource usage, but also in terms
of security and reliability.

In order to keep the size of this paper in a convenient range the content is presented
in a rather concise and compact manner. For a deeper understanding of the topics
provided, this paper is supported by an according presentation [10] which in turn
gives various illustrative examples and verbose explanations.

2 Introduction to C Buffers and Storage Variants

2.1 Terminology

The meaning of the term buffer itself heavily depends on its context, even if
restricted to the domain of computer science.

To make up for this ambiguity, the term C buffer used throughout this paper refers
to a compound and continuous area of computer memory that is assigned data of
the same C datatype and allocated using the C programming language.

2.2 Buffer Variants

C Buffers can generally be allocated either statically or dynamically. Both variants
differ heavily in terms of ressource usage and flexibility, so a basic understanding of
those is vital in order to choose the right allocation strategy suiting the individual
task.

2.2.1 Static Buffers

Static buffers feature a fixed size preset at compile time and reside in memory
persistently during a program’s lifetime. For these characteristics, control of
static buffer allocations is given implicitly to the operating system rather than
the programmer. Upon program execution, the operating system’s executable file
loader analyzes the program’s static demands, allocates the appropriate amount
of memory and finally deallocates that memory at program termination. This
approach gives little to no control to the programmer and as such lacks flexibility,
though it offers fast, simple and reliable operation.

Any C variable that is declared outside a function’s body is by default allocated
statically. To allocate a static variable inside a function body, the declaration
must be prefixed by the static keyword. Listing 1 illustrates a typical static
buffer application. Variables declared outside a function’s body might as well be

Working with Buffers

prefixed by static, though unlike one might assume by intuition it does not specify
allocation requirements but prevents a variable’s symbol of being exported [12].

char oneStaticBuffer [256] ;

int main (void)

{
static anotherStaticBuffer [256] ;
return (0) ;

3

Listing 1: Static 256 Byte Buffer Example

2.2.2 Dynamic Buffers

Dynamic buffers are allocated and deallocated at runtime by either implicit declara-
tions or explicit function calls. Consequently, they offer a broad range of flexibility
for they may be allocated or purged on demand and allow for adaptive size settings.
Of course these major advantages do not come for free, dynamic buffers require
additional ressources such as runtime management measures and special care by the
programmer. Dynamic buffers may generally be allocated in any suitable memory
region, though in practice only two special types, the stack and the heap, are
commonly used.

2.2.3 The Stack

The stack forms a memory area that is accessible in a LIFO (Last In - First Out)
fashion. One way to imagine the stack is to think of its elements as heavy boxes
placed on top of each other. The only box directly accessible is the topmost one, so
access to any other box can only be gained by removing the boxes on top of it one
by one beforehand. Following this analogy, the box on the bottom is denoted stack
bottom, the topmost box is denoted stack top. In terms of stack data structures,
putting an element on top of the stack is called a push operation, removal of the
topmost element is performed by a pop operation. Unlike the box model, memory
cells can not be physically moved of course, so an index is required to keep track
of the current stack position. This index is involved in any stack operation and
commonly denoted as stack pointer, often abbreviated SP.

Though it might not be considered intuitive, the stack traditionally grows towards
smaller addresses on many popular architectures such as i386/AMD64. In the
early years of microcomputer development, a long time before virtual memory
became widespread, the negative growth was used as a measure to improve memory
efficiency. The stack grew downwards from the top of the physical memory whilst
other data such as the heap grew upwards from the bottom. The programmer had
to take special care to prevent overlapping or data corruption, and needless to say

Christoph Brauer

that such a layout imposed countless errors, but at least valuable memory space
could be saved.

Keeping the SP in mind, a push operation can be described as a decrement of the
stack pointer followed by a write operation to the memory address pointed to by
that altered SP. Accordingly, a pop operation requires a read access followed by in
increment.

Both push and pop operations as well as a dedicated SP register are usually provided
by CPU hardware directly.

Figure 1a illustrates the stack’s principle of operation, Figure 1b gives a memory
snapshot of an example stack featuring an element size of a single byte and a
capacity of 256 bytes. The illustrated stack state was reached after the values 0x10,
0x20 and 0x30 were pushed on the initially empty stack, two elements were popped
and finally another two values 0x40 and 0x50 got pushed.

OxFF 0x10

Stack OXFE 0x40

bottom > 1st element l push
Growing 2nd element OxFD 0x50 =< SP
direction Stack N .

top (SP) 3rd element

0
Y Pop 00
(a) General Structure (b) Usage Example

Figure 1: Stack Ilustration

In terms of allocation demands, the stack behaves just as one might have guessed
by intuition. Any element given a memory address greater than that of the SP is
considered free, all others are already occupied and thus reserved. Consequently,
allocating a block of memory on the stack is done by nothing but an according
increment of the SP, deallocation by a decrement. In other terms, deallocation of
stack data is done by abandonment.

C programs generally make extensive use of the stack as a general temporary
storage. Listing 2 illustrates an example stack buffer allocation.

void simpleFunction (void)

{
char stackBuffer [1024] ;

}

Listing 2: Stack Buffer Allocation Example

A buffer is allocated on the stack whenever its declared inside a function’s body as
a function-local variable.

Working with Buffers

A C programmer is kept mostly unaware of the actual stack operations for they are
implicitly created by the compiler and only appear visible in the assembler output
listing. The stack is used as a shared memory between function calls, so there is
only one single stack utilized throughout program execution.

Though operational details heavily differ by system architecture, compiler or calling
convention, the stack is commonly used to store function return pointers, register
contents and function-local variables.

The ability to store interleaved content such as program flow data and user variables
makes the stack a general purpose memory, though this flexibiliy comes at the cost
of major drawbacks as described in Section 4.

Whenever a C function is called, it is assigned a memory region on the stack,
a so-called stack frame. For the stack is shared throughout program execution,
nested function calls cause stack frames to be created just one after each other.
Figure 2 illustrates an example stack state after a function A has called a function
B. Individual stack frames are especially important for the executing of recursive
functions for they allow for independent local variables across nested calls.

Function A's _
stack frame Return address
of calling function
Stack Function B's o Saved registers

stack frame

Local variables

General temporary
storage

Figure 2: Stack Frame

For a function’s stack frame is abandoned after the function is finished, the lifetime
of local stack variables including buffers if restricted to a function’s lifetime. For
instance, given a stack layout as illustrated in 2, passing a pointer to function A’s
local data from function A to function B is unproblematic, though the other way
round is errorneous for such a pointer references abandonded any most probably
invalid data.

In conclusion, stack buffers provide for dynamical runtime allocation requiring
minimal management effort, though the application domain is restricted due to the
limited lifetime.

2.2.4 The Heap

Unlike the stack, the heap does not feature any access order conventions and as such
forms a freely accessible memory region. Though heap memory itself is provided
by the operating system, kernel calls are barely ever used directly in practice. One
way to imagine the cooperation of kernel and user space allocators is to think of the
kernel as a brewery, of an user space allocator as an innkeeper and of a function as
a pub guest. The guest wants to drink a beer or maybe two, and though he could
buy a whole barrel from the brewery directly, this would be a rather expensive,

Christoph Brauer

time consuming and wasteful approach. Instead, the guest is most likely going to
buy a single beer from the innkeeper and leave the task of obtaining whole barrels
to him. Additionally, this approach provides the opportunity to distribute the beer
among different guests by sharing the barrel.

In terms of buffer allocations, the kernel provides for large regions of heap memory.
The task of splitting the heap into smaller partitions as demanded by a program’s
allocation requests is performed by the user space allocator. Allocations are
tracked internally to allow for memory bookkeeping and release of previously
reserved memory. Once the heap space available to the user space allocator is
exhausted, additional memory is requested from the operating system. Many user
space allocators come with advanced features such as defragmentation measures or
caching mechanisms, though these are not strictly obligatory.

One promiment example of an user space allocator is given by malloc [3, 6] shipped
as part of the C standard library, but there are multitudes of different 3rd party
allocators available as well. Unless a suitable allocator already exists, special tasks
might as well benefit from a programmer supplying a self-written version.

3 Runtime Allocation Efficiency

As suggested in Section 2.2, buffer allocation efficiency is determined by a tradeoff
between flexibility and ressource usage. In order to maximize runtime efficiency,
a programmer is advised to choose an allocation mechanism featuring the least
flexibility just suiting the specific task. In case neither static nor stack allocations
are applicable, memory must be allocated on the heap. Though heap memory
allocation generally tends to be the most ressource consuming allocation mechanism,
the programmer is given the opportunity to choose an user space allocator best
fitting his needs.

3.1 Malloc Allocation

The common and traditional way to allocate heap memory using C is to use the
malloc allocator. It has been developed and used for many years, and though
there were security concerns in the past [8], it is considered stable and generally
applicable today.

Working with Buffers

Heap

A— D ——
T\ N

1st 1st allocated 2nd il?gcated 3rd 3rd allocated free
header | block header block header block memory

\/ \/
1st Partition 2nd Partition 3rd Partition 4th Partition
Figure 3: Malloc Heap Layout

As depicted by Figure 3, each memory block allocated by malloc is directly prefixed
by an associated internal structure called memory header. A header contains
information about the memory block next to it such as its size or availability. All
headers are arranged to form a doubly-linked list, therefore operations such as
insertion or removal require pointer modifications just as known from common list
node operations. For each allocated block is accompanied by an according header,
significant management overhead in terms of memory usage might occur given
many small allocations. Popular implementations of malloc-style allocators include
libc ptmalloc [6], jemalloc [11], temalloc [7] and dlmalloc [13], though there are
many more to choose from.

3.2 Slice Allocation

Unlike malloc, a slice allocator as suggested by Jeff Bonwick [9] acts predictively
for it’s allocation strategy is based on the assumption that the occurence of a small
memory allocation request is most probably followed by multiple similar request.
The according definition of "small” varies by implementation and configuration,
though less than 256 bytes are commonly considered small given that context.
Allocation request that exceed this size limit are not handled by the slice allocator
itself but delegated to a traditional allocator such as malloc instead.

Heap

sice sice free
header header memory

1st Partition 2nd Partition 3rd Partition
Figure 4: Slice Heap Layout

Figure 4 gives a simplified illustration of a slice allocator heap layout. A slice is
made up of a slice header followed by multiple equally-sized slice blocks. The header

7

Christoph Brauer

contains fundamental information such as the general slice status, the blocksize,
the overall number of blocks and the number of occupied blocks. Slice blocks are
always reserved in a consecutive fashion such that a bank of occupied blocks is
followed by free blocks, if any. This layout allows for a single header controlling
multiple allocated blocks and as such might noticeably decrease memory usage.
Whenever memory is requested, the slice allocator checks for an available slice
such that its blocksize matches the allocation request’s size. Unless a pre-existing
appropriate slice is found, an according one is created, its header is updated such
that the number of occupied blocks is incremented and a pointer to the block just
reserved is returned.

The process of deallocation forms one of the slice allocator’s major drawbacks. In
case the according slice contains only one single element, the deallocation of that
element causes the slice to be removed. Otherwise, the number of occupied blocks
stored in the slice header is decremented and the slice is marked not available for
further allocations. As mentioned before, the reduced memory usage of a single
slice header controlling multiple blocks relies on the fact that a compound area
of allocated blocks is followed by free blocks. A block to be deallocated is not
guaranteed to lie at the end of a reserved row, so it possibly breaks the condition of
the allocated blocks forming a compound area. Consequently, the positions of the
remaining free blocks are left undetermined, and further allocations are prohibited.
A fully working implementation of a slice allocator is available as part of GLib [2].

3.3 Summary

Heap allocation can be performed in many different ways, and there is no strategy
that can be considered generally superior. An efficiency comparison between
ptmalloc and the GLib slice allocator is given in the presentation, and though the
slice allocator proves that it may very well outperform malloc in certain situations,
there are settings in which malloc might be the more efficient choice. For instance,
a program that repeatedly executes a loop in which 2 small buffers of the same
size are allocated and only one of them is freed is most probably going to perform
significantly better using malloc than a slice allocator.

Working with Buffers

4 Security Concerns

Unlike many modern programming languages such as Java or Python, the C
programming language does not provide any built-in capabilities to enforce buffer
bounds checking. Consequently, the responsibility for proper buffer usage lies with
the programmer.

Errorneous buffer usage has been repeatedly identified as a source of program
malfunctions for decades [4], and though noticeable effort has been put into the
development of according counter measures [14], the problem can not be considered
solved yet [5]. Any buffer access that exceeds a buffer’s bounds addresses a
surrounding region of memory not belonging to that buffer. Such a region may
contain vital data such as heap memory management structures, local stack variables
or function return addresses, so especially write accesses exceeding a buffer’s bounds
might cause harmful consequences.

Unfortunately, the standard C library itself provides several functions such as the
infamous scanf that work on buffers without checking proper size restrictions. One
might ask how such insecure functions could ever make their way into a widespread
standard code repository, and the answer is as short as simple : The standard C
library was invented in the 1970s, and programmers were unaware of a future as
we face it today in which computers are commonly integrated into public networks
and as such popular targets of malicious attacks. Apart from the unawareness,
programmers are simply humans who tend to make mistakes just like everybody
else, and routines working on buffers are just as error prone as any others.

So called buffer overflow attacks provoke errernous buffer handling on intention.
Most commonly, a vulnerable program is provided with selected input data to fill
and finally overflow a buffer. According to the type of the attack, the program may
crash, the program flow may be altered or even code provided by the attacker may
be executed. Listing 2 gives an example of a typical vulnerable program.

#include <stdio.h>

int main (void)

{
char nameBuffer [512] ;
printf ("Please enter your name : ") ;
gets (nameBuffer) ;
printf ("Hello %s !\n", nameBuffer) ;
return (0) ;

}

Listing 3: Vulnerabilty Example

At a first glance, the program does not appear to be too exciting, a name is read
from the standard input, stored inside a stack buffer and finally printed on the
standard output. One might be temped to assume a certain level of security for a

Christoph Brauer

buffer size of 512 bytes appears sufficient to store any person’s real name, yet such
an assumption is misleading. The given program can easily be crashed by a single
shell command :

$ python -c "print 15000%°x°’" | ./crash.elf
close failed in file object destructor:
sys.excepthook is missing

lost sys.stderr

Segmentation fault

Output 1: Vulnerabilty example

Numerous practical examples of different buffer overflow techniques are presented
in Section 4 of the accompanying presentation, and study of those is highly recom-
mended for a deeper understanding of potential security risks.

4.1 Countermeasures

As the enduring presence of buffer overflow bugs may suggest [1], there is no simple
answer to the question about how to generally avoid buffer security issues.
Though total security can never be guaranteed, several inventions might help to at
least reduce the risk of vulnerabilities. Recent compilers such as GCC 4.x offer the
option to enable a built-in stack protection mechanism by validating a function’s
stack frame contents upon its return. Such an mechanism can not prevent stack
corruptions, but at least the program is terminated and an verbose error message
is given. Many modern CPUs such as those based on the AMDG64 architecture
provide mechanism so mark memory sections not executable. Just like the compiler
stack protection, stack corruptions can not be avoided, though the risk of running
malicious injected code is minimized. Last but not least modern operating systems
feature an adress space layout randomization such that the address space belonging
to a process is altered any time the process is run. Most exploits use fixed jump
positions and thus require a known memory layout beforehand, so the risk can be
minimized.

The most effective counter measure is simply given by security-aware and careful
programming. Functions known to induce security risks such as the infamous
standard C functions gets, scanf, strcpy, strcat, sprintf, vsprintf should
generally be avoided and replaced by variants that are at least known to be
less insecure such as fgets, strncpy, strncat, snprintf, fgets, strlcpy and
strlcat. This list is by no means comprehensive, and even those functions
considered secure might appear to be vulnerable in the future. New bugs are
spotted every day, and security focussed internet sites should be consulted to gain
latest information about security issues. Software should be tested extensively, and
especially buffers should be overflown by intention to investigate potential weak
spots.

10

Working with Buffers

5 Bibliography
References

[1] Bugtraq mailing list. http://www.securityfocus. com.

[2] Glib memory slice allocator. http://developer.gnome.org/glib/2.30/
glib-Memory-Slices.html.

[3] Malloc function reference. http://man7.org/linux/man-pages/man3/
malloc.3.html.

[4] The morris internet worm. http://groups.csail.mit.edu/mac/classes/6.
805/articles/morris-worm.html.

5| Multiple zero-da oc exploits threaten oracle mysql server.

[p y P p ysq
http://blog.trendmicro.com/trendlabs-security-intelligence/
multiple-zero-day-poc-exploits-threaten-oracle-mysql-server/.

[6] ptmalloc - a multi-threaded malloc implementation. http://www.malloc.de/
en/.

7] Temalloc : Thread-caching malloc. http://goog-perftools.sourceforge.

[g p://goog-p g
net/doc/tcmalloc.html.

[8] Advanced doug lea’s malloc exploits. Phrack, 11(61), August 2003.

[9] Jeff Bonwick. The slab allocator: An object-caching kernel memory allocator.
In USENIX Summer, pages 87-98, 1994.

[10] Christoph Brauer. Presentation about working with buffers. http:
//wr.informatik.uni-hamburg.de/_media/teaching/wintersemester_
2012_2013/epc-1213-brauer-buffer-praesentation.pdf, 2012.

[11] Jason Evans. A scalable concurrent malloc(3) implementation for freebsd.
http://www.canonware.com/jemalloc, 2006.

[12] Brian W. Kernighan and Dennis Ritchie. The C' Programming Language,
Second FEdition. Prentice-Hall, 1988.

[13] Doug Lea. dlmalloc. http://g.oswego.edu/d1l/html/malloc.html.

[14] Todd C. Miller and Theo de Raadt. strlecpy and strlcat - consistent, safe, string

copy and concatenation. In USENIX Annual Technical Conference, FREENIX
Track, pages 175-178, 1999.

11

